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KINETIC APPROACH TO SOLITON TURBULENCE 

C. M. Tchen 

City College of t he  City University of New York, New York, N . Y  ,10031 

ABSTRACT 

The forced Schrddil-jcer equation for s t rong fluctuations describes 

the micro-hydrodymical s ta te  of soliton turbulence. It is valid for large- 

scale turbulence where the  internal waves can interact with the velocity 

fluctuations. It was derived by Tchen, a s  a fluid analogue, from the 

Navier-stokes equations for compressible flows. I t  is transformed into 

a master equation, to be subsequently decomposed into a macro-group, 

a rnicro-group, and a submicro-group, representative of the three trans- 

port processes of spectral evolution, t ransport  property,  and relaxation. 

The loss of memory in formulating the  relaxation function gives the 

closure so that  the t ransport  property can attain i ts  equilibrium. The 

kinetic equation for t he  macro-distribution i s  returned to the continuum 

by the method of moments to derive the  equation of  spectral evolution. 

The spectral flcw is governed by the  three t ransport  functions as follows. 1)A 

transfer function from the  (cubic) modulational nonlinear1 ty forms 

2 direct cascade. 2 )  A transfer function from the  driving force, 

which enters  a s  a convective nonlinearity in t he  phase-space, produces 

J 
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a reverse cascade for accumulating the solitons toward the large-scale 

end of the  spectrum. 3) A coupling function represents  the  excitation 

of the solitons by the  driving force which acts  a s  a scattering (or  

emission) from velocity fluctuations. 

The following power laws 

a re  found for the soliton field intensity and density,  respectively, 

with 

m = O ,  n = O  
c 

in the  inertia subrange by reverse cascade, and 

m = 2 .  n = 4  

in the coupling subrange a t  larger wavenumbers. These analytical 

predictions a re  verified by experiments. The  forced Schrodinger equation 

i s  valid for fluids and plasmas. 
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1. Introduction: The  Forced SchrGdinger Equation for  the  Description 

of Soliton Turbulence 

The multi-scale motions in fluids and plasmas a re  more adequately 
f described by the  nonlinear Schriidinger equation 

instead of  the  usual Navier-Stokes equation. The  modulation relation 

makes the  Schrcdinger equation cubically nonlinear. Here is the 

longitudinal field and is related to the density fluctuation 

The density i s  normalized such that 

/u 

N by ( 2 ) .  

- 
N = 1 .  ( 3 )  

The over-bar denotes an  ensemble average, (", denotes a fluctuation, 

and A" i s  the  operator. t he  constants a r e  

having the dimensions of viscosity, frequency, and (acceleration)-2, 

respectively. 
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The representation of t he  many-scale motions by the Schrbdinger 

equation is well recognized in plasmas, because of the  presence of t h e  

ion and electron species, and therefore the  Schrbdinger equation was 

first derived for plasmas. The  analogous representation for fluids, called 

the fluid analogue, is not evident. In fluids of l a rgesca le  motions 

where the compressibility is  not negligible, t he  longitudinal density 

waves may couple with the  t ransverse  velocity fluctuations. The  internal 

gravity waves of large scales may also couple with the velocity fluctuations 

and transmit the effects to smaller-scale turbulence. These fluid motions 

of many scales justify the  fluid analogue of the Schrbdinger equation 

and its derivation from the Navier-S tokes equation for compressible 

fluids. The reason for having a fluid analogue lies in the fact that  

the Navier-Stokes equation is formally tied down to small scales by 

t h e  nonlinearity u - V  2 of the  gradient type,  where u is the  fluid 

velocity . The Schradinger  equation has  the  cubic nonlinearity 

A /I 

" - - 

\E - E" not of the gradient type,  and is faur,d more suitable 

for the description of large scales. 

An examination of [ 1) reveals that  t he  modulational nonlinearity 

yields a direct cascade, and should require a sink for balancing the 

spectral flow.An artificial sink wouId introduce an ambiguity. Hence 

the Schrodinger equation in the  original form ( 1 )  cannot describe turbulence. 

The reason for th i s  difficulty lies in that the  original derivation was 

intended for weak fluctuations. The fluid analogue for s t rong turbulence 

requires a new derivation. 

We have derived a generalized Schrtidinger equation in the form 
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2 
as follows: 

- 
w i t h  a driving force X , tha t  obeys the  Poisson equation 

k w 
V X = - L W  r , ... 2 "  

3 and contains the scattering (o r  emission) 

N 

by the velocity fluctuation u 

"forced Schrddinger equation". W e  consider isotropy by assuming 

. The equation (4) will  be called the  
(.. 

L - 
E = O ,  X = O  . ... n 

( 5 )  

(71  

In conclusion, the forced schrddinger equation, bu t  not the s tandard 

Schrddinger equation and the Zakharov equations, W i l l  

turbulence. 

develop 
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2. Master Equation for Solitons 

For the  evolution of t h e  spectral distribution of field fluctuations, 

the knowledge of the eddy t ransport  properties is  necessary, for which 

es a kinetic theory is  most 

of gases and plasmas. A continuum theory of correlations, a s  based 

upon the forced Schrijdinger equation, would immediately be faced w 

appropriate, like in any t ransport  theor 

th  

the difficulty of high-order correlations. The most well known kinetic 

fithod for treating collective phenomena is the statistial method of many 

bodies by Bogoliubov. I t  introduces a master equation of N particles 

that  interact with a fidd I and by successive intergrations, 

generates a hierarchy of equations for the many-particle distribution 

functions, called the  BBGKY hierarchy. For the  spectraIBevolution, 

the closure that  leads to the  kinetic equation for the pair-distribution 

is necessary. This is considered to be a difficult 

mechanics. In addition, t he  fieid of interaction E(t ,x)  that  is a simple 

Coulomb field in plasmas becomes much more complicate in solitons, 

as  having to satisfy the  nonlinear partial differential equation (4) in 

view of its self-consistency. W e  also wish to avoid the difficulty from 

the kinetic equation 

task in statistical 
A 

v -  

of pair-distribution function. 

For these reasons, w e  devise a group-kinetic method. The 

forced Schr6dinger equation (4) can be considered a s  the first moment 

of the  following master equation 

* c *  

(3 ,  + L)f( t ,x ,E)  = 0 . - -  

The differential operator 

d 



A * ry 

L = L + L N + L X  
Y 

consists of three conponents 

The function 

in the phase space has E a s  an independent variable. The zeroth 

moment gives 
. - -  

and the first moment gives 

A - % =/dE E 7  . (7th) /dE - -  E ?  = - - -  E, E=JdE d C  E f , ... 
- L  

The master equation in the  form ( 8 )  describes the rnicrodynarnrcal 

s ta te  of turbulence. This can be shown by reverting it into the  forced 

Schredinger equation through the  moment operation. 
N 

Since the field arrplitude E is complex, the distribution function - 
H & Y 

f ( t , xE)  will be  complex too, while the functions N and X a r e  real. 
.I c c  
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3. Kinetic Equation of Soliton Turbulence 

For  soliton turbulence, we need to der ive a k inet ic equation 

that expi ici t ty shows the interaction between the large and small scales. 

Since both the forced Schrbdinger equation and the master equation 

(8 )  as a kinetic correspondent describe the microdynamical state of 

soliton turbulence in too many details that  are unnecessary fo r  a statistical 

treatment, a procedure of coarse-graining i s  needed. The decomposition 

into Four ier  components w i l l  not  suffice. In compliance w i t h  the separate 

statistical roles, we decompose the f luctuation 

0 
into a macro-group (1  and a micro-group ( ) I ,  and by re-scaling 

the micro-group 

in to a submacro-group 0' and a submicro-group 

groups wi th  operators 

A o  @ A'  A "  

represent the three transport  processes of spectral 

(13b) 

( ) ' I  . The three 

( 1 4 )  

evolution, t ransport  

property, and relaxation. The  loss of memory in the relaxation makes 

the transport  coefficients approach the i r  equil ibrium, and yields the 

closure. The three groups are separated by the three durations of 

1-8 
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correlations 

The superscripts 

with square brackets denote the deterministic statistical properties 

as  derived from the fluctuations (13) and from ensemble averages. 
0 

We scale the master equation by the operators A and A '  to 

obtain the syst- of equations 

and 

The eddy collisions are: 

1-9 
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The submicro-distribution 

IS a cluster of high-order groups that represents the fr ict ional environment 

in which f1 evolves. T h e  collision coefficients Grl' and is 
act as integral operators. 

111') 

may 

The composition o f  is determined by (18) .  Upon integrating, 

we have the distr ibut ion funct ion 

from which we calculate the  eddy collision 

Since the groups 

0 
A1 and A 

hzde the time scales 

by ( 1 5 ) ,  we can replace the upper l imit t o f  integration 
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by 00 without loss of generality, and obtain an asymptotic collision 

coefficient 

that is deterministic. Here w e  have written 

L’(t) = L’(t,x,E) . 

for the sake of  siaplicity, and A 1 is  the  operator of evolution. In 

an ana1ogou.s manner, w e  define 

By noting 

w e  Can show the equivalence between (22a) and ( 2 2 b ) ,  and write 

d 
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W i t h  the collision coefficient thus determined in the form (22b),  

the equation o f  evolution of the macro-distribution ( 17) becomes 

r i l o  ( 2  + A o t ) f o = -  L o ?  + &  f . 
t 

It i s  expl ic i t  in fo , and is called the k inet ic equation of turbulence. 

4. Schrodinger Equation o f  Soliton Turbulence 

By taking the momeht o f  the k inet ic  equation (241, we rever t  

to the continuum and der ive the  following Schrodinger equation of 

soliton turbulence: 

0 0 0  0 0 
- ~ L ) ~ v ' + ~ L w A  N ) E  = - i x  + J ,  

( 2 n  ... -. - 
w i t h  

or equivaien tl y 

J o  =/dE E Et'' fo , 

by (23).  It has a l l  the constituents of the or ig inal  forced Schrodinger 
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equation (41, and,  in addition, the eddy stress (26) .  The latter 

represents the  statistical effects of the  colliding micro-eddies. 

By writing 

into two components a s  corresponding to  LN' and LX' , w e  transform 

the  eddy stress (26b) into t w o  par t s  a s  follows: 

0 0 0 

J s  'N + Jx * 

w i t h  

The l i m i t s  of integration a r e  understood to extend from - & t o  00 . 
The coefficients of collision a re  integral operators,  and the operator 

symbol { 1 is  understood. 

5.  Spectral Flow 

O* 
Upon multiplying (25)  by E and adding the complex conjugate 

u 

part ,  w e  obtain the energy equation for the solitons, a s  follows: 
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Homogeneity and isotropy a re  assumed. 

The t ransport  functions a r e  written in the order  of their importance 

with increasing wavenumbers. 

The coupling function 

W o  =I [- i(X4 Eo*) + i ( X o  Eo>] 
2 - -  . 5 - -  

excites the solitons by the  driving force. The  transfer function 

Io 1 = -(\Jxo. Eo*]} - b 
T X  

for the reverse cascade accumulates t h e  solitons toward the large-scale 

end of the spectrum, and the  t ransfer  function 

ro3 = -((JNo. Eo*/) - .. T N  

for the  direct cascade causes a disintegration of the large eddies 

into smaller eddies. The  vertical bars  represent the absolute values. 

The remaining convective terms 
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in the  left hand side of ( 2 5 )  do not contribute to the  spectrai flow, 

on account of their imaginary character. 

6. Theory of Eddy Transport  

6.1. Eddy aiffusivities 

It will be convenient to  introduce the  following eddy diffusivity 

opera tors 

with the evolution operator 

A'  = A'A 

for transforming the collision coefficients into 

(34) 

6 
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and the  t ransfer  functions into 

Use is made of (28), (31) a n d  (35).  The  approximation retains those 

components of diffusivity (33) originating from the  auto-correlations, 

and neglects o thers  from cross-correlations. 

The  diffusivities upon which the t ransfer  functions depend 

a re  the T-integrations of the  Lagrangian correlations, the orbit  being 

characterized by the  fluctuating evolution operator A’ . For the sake 

of simplicity and a s  par t  of our  attempt of memory loss, w e  approximate 

the operator by its average 

and write the diffusivities ( 3 3 )  in the  Fourier form, a s  follows 

1-16 



Here 

I S  the coefficient of Fourier truncation in three dimensions within a 

length interval 2M which may be as large as  desired, and 

w ... 
are the spectral intensities of N- and X -  fluctuations, such that 

4 

The intensities ( 3 8 )  serve as  operators. 
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The submicro-time 

is the  relaxation t i m e  for the approach of the  diffusivities ( 3 7 )  to 

equriibrium. The  same relaxation holds for both diffusivities, since 

they share  the identical operator of evolution - The  orbit function 

I S  

w i t h  the components : 

The first component relates to a streaming by E in weak turbulence, 
P PI11 w 

L, < o  N and the second component relates to an internal modulation by 

in strong turbulence. The third component 

is omitted in view of its external a n d  divergent character.  

d 1- 18 



The orbit  function is  the  result of integrqtion of the  equation 

( 1 8 )  for f1 by the use  of the  evolution operqtor A' that entails 

From the  characteric equations of the  partial differential master 
P 

equation, one can determine the exact orbit  wi th  more orbital components 

than those listed in (4 l a )  and (41b). We have selected the major ones 

that represent streaming and modulation only. With the assumption 

of similarity between 

and ( 4 2 )  

a loop is formed, causing a loss of memory and yielding a closure. 

Upon substi tuting ( 4 0 )  into (391, and subsequently into ( 3 7 ) ,  

(35) and (36), we transform the  diffusivities into 

and the t ransfer  functions into 

(44a )  

1-19 
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where 

by the orbit fucction. 

B y  noting that 
.. 

and by partial integration, we can write 

and 

The  approximatior1 of keeping the highest moment in 5 has been used 

in (44a) and (44bl.  

i 
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The change of signs in the two t ransfer  functions (44a) and 
t o 7  i s  (44b) indicates that  TNco'is ci direct cascade and that  TX 

a reverse cascade. 

6.2.  Fluidization a s  a means of closure 

We recall that  the decomposition into the  three groups with 

opera tors  

A' , A'  , A" 

corresponds to a decanpasjtion into three  transport  processes of evolution, 

diffusivity, and relaxation. Firstly, t he  macro-scaling yields the  spectral 

evolution ( 2 9 )  with its coupling function W and the  t ransfer  functions io3 

. By definition (30),  the  coupling function governs Io1 101 
*X ' TN 

0 0 

the  spectral flow between the  two macro-groups X and .s E By - ._ 

governs the spectral  CO1 definitions (31a), the  t ransfer  function 

flow from X'  into E through the intermediary o f  the  collision 

coefficient cx 
TN 
intermediary of the  collision coefficient 

coefficients a r e  proportional to the  diffusivities 

by (35). Thirdly, t he  approach to equilibrium and hence the closure 

TX 
0 

U 

['I . Similarly by definition (31b),  the transfer function 
0 

governs the  spectral  flow from E into N' through the 
y: I;; . Secbndly, the collision 

and 
CI3 

K N  
C ' 7  

K X  

ci13 depend on the time of relaxation 5 , which en ters  into the diffusivities 

b y  (37).  We have determined the relaxation by analyzing the orbit 

(t) from (40) and ( 4 1 ) .  
14 

function in t w  components hE( 7: ) hN 

They control the  equilibrium of the  diffusivities (43 )  and the l r s r s f t r  
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In s t rong turbulence the  streaming by E is negligible, giving * 

The cluster of distribution functions (20) which shapes the frictional 

property of the medium in which f1 evolves is now assumed to act  

like a fluid with a collision coefficient 

rI1 1 This means that the collision coefficient t ,x ,E)  in the  kinetic 

representation with its individuality in E a s  an independent variable 

will be reduced into a collision coefficient cNf ( t , x )  

representation by losing the  individuality in 

ceases to be an operator. Hence the "fluidization!' of the  cluster 

N 

& 

14 
in the fluid 

* g c 1 1 7  E . In this way, 
N f  m 

of distributions yields the  closure. 

6.3. Calculation of the collision coefficients, t he  diffusivities, and 

the transfer functions 

With the approximation of s t rong turbulence (46a) and the hypothesis 

of fluidization of the cluster (46b1, w e  reduce (41b) and (44c )  into 

and 
1-22 



A t  the same time we calculate the moments in 5 

w i t h  cx = 4! to transform (421, (35 )  and [44) into 

and 

respectively. The subscript ( If denotes a fluidized property.  

1-23 
1 



B y  w r i t i n g  the spectral intensi ty in terms of  the i n t e g r a l  of 

the spectral density, we have 

Nk C' I 2 = 2 [kmdk'' FN(k") 

N 

where F (k") and F ( k " )  are spectral densities of the N- and 

X- fluctuations. 

N X 
w 

B y  the use o f  the notation (531, we can rewrite (Sia) in the 

form o f  the following in tegra l  equation 

C13 fo r  the determination o f  the coilision coefficient cNf 
assumed that and have the same spectral s t ruc tu re  

except fo r  the dif ference of: argumnts  k and k" * The integral  

. Here we have 
c '17 

N f  N f  

equation i s  solved to  g i ve  

W i t h  th is  solution we calculate al l  the expressions in ( S O )  and  

( 5 1 )  to obtain: 
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6.4. Coupling process 

The  coupling function yJ[oI, a s  defined by (30), couples the 
0 0 

two macro-fluctuations E and X . its determination requires a 

fluid equation of macro-evolution in the  form 

... * 

a s  obtained by ( 2 5 )  under the hypothesis of fluidization and by using 

the asymptotic value of the  collision coefficient a t  large scales. 

Upon integrating (571, we get the  macro-field 

Ao(t,t-xl Xo(t--G) , 
.". -.L 

and calculate the  coupling function 
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= 3 K X  G r  . 

C O J  Here K X  is the trace of the diffusivity tensor, and 

i s  the evolution operator. An approximate estimate is given in the 

following. In the Fourier form, (58  b) is 

In the fluid approximation. w e  have 

and obtain 

1-26 



7 - Spectral S t ruc ture  

7.1. Equation o f  spectral balance 

We have obtained above the t ransfer  function TX “’ for  the 
111 

reverse Cascade (52b) with t he  coefficient of collision qf by (Sib), - _ -  
COl the coupling function W by (621, and finally the  t ransfer  function 

“I for the direct cascade (52a), with the coefficient q:’ by TN 

(55a) . 
The three t ransport  functions govern the  spectral balance, as 

follows : 

The function 

represents the instability of solitons. 

The inertia subrange by reverse cascade is governed by 

1-2 7 



The coupling subrange a t  larger  wavenumbers is governed by 

the spectral balance in the  form: 

= o ,  1.3 C 01 W - T N  

o r  

The asymptotic value of the coliision coefficient is used in the present 

subrange of larger wavenumbers. The amount of energy Wrol that  

IS produced by emission flows into the direct  cascade TN 

would predict a secondary inertia I: 01 Formally, a constant TN 

subrange by direct cascade, if a constant dissipation could be found. 

Even so, the spectral cutoff by ( C ,  can occur before the direct cascade can 

be established. 
h 

7.2 .  Spectral laws 

We take the spectral law 

1 O 1 2  = ux 6 k-2 
'k 

for the driving 

spectrum is valid for a driving force that  se rves  a s  a production of 

internal density waves in compressible turbulence. 

force, where ax is the frequency scale . This 

3 

The spectral s t ruc ture  in the inertia subrange by reverse  
-= 

cascade is governed by the spectral balance (64), under the conditions 

1-28 
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( 2 )  and (66). W e  find the spectral laws 

representing a flat maximum in the  spectral piot. 

The spectral s t ruc ture  in the coupling subrange is governed 

by the spectral balance (65b). By again using ( 2 1  and (661, w e  find 

the spectral laws: 

Here cNf - 
The spectral l a w s  of intensities 

internal parameter defined by (55a) .  

have their group notations omitted. 

8. Conclusions 

Although the  equivalence between the Schrcdinger equation and 

the Navier-Stokes equations has been established, 2‘ ‘-13 their nonlinear- 

lity differs. The  former is cubically nonlinear and the  latter has a 

nonlinearity of the gradient type. The Schrcdinger equation is thus 

more suitable for the description of iarge-scale motions than do the 

Navier-Stokes equations. 
1-29 
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The noniineqr Schrodinger equation and the more general 

Zakharov equations were originally derived for weak fluctuations in 

plasmas. ' Their derivations neglected the  scattering (emission) by 

velocity fluctuations. By generalizing to include finite fluctuations, 

w e  found the forced Schr6dinger equation.* 

By the reverse  cascade, the field energy i s  accumuiated toward 

the large-scale end of the  spectrum. The  inertia subrange is fo1lchi.l-d 

by the coupling subrange,  where the energy that is built u p  by emission 

IS cascaded down toward the smaller eddies in a direct cascade. 

Consequently, the spectral intensity of field fluctuations fails w i t h  

the power law 

falls with the power law k 

k-* , and the spectral intensity of density fluctuations 
24 

i s  to cause a spectral cutoff of these power 

. 
The role of '3, 

laws. The prediction of the  power laws for the  density intensity has 

been measured and is verified by Truc  in the plasma experiments. 

See Fig. 1. The plot uses  the spectral  density 

to the  spectral intensity by 

7 

FN(k) that  i s  related 

The absence of the driving force from s t rang  fluctuatrons 

will m i s s  the mechanisms of accurrufation and coupling. The transfer 

by direct cascade is the  only mechanism which survives.  On its own 

it cannot initiate a spectral flow and a spectral balance. This explains 

why it  is so difficult for the standard Schrodinger equation to yield 

a spectrum. 8 
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FLUID ANALOGUE OF THE SOLITON FORMALISM 

C.M. TCHEN 

City College of the City University of New York, New York, N . Y .  10031 

ABSTRACT 

I f i  view of the many applications to turbulent phenomena in fluids, 

plasmas, optics, astrophysics and nerve systems, a large effort  has been given 

to icvestigate the solitons analytically and numerically. The results 

of analysis by means of the  2-S equations ( the nonlinear Zakharov equations 

and the Schrijdinger equation) have not been encouraging, and have 

concluded that the solitons could not become turbulent and establish a 

broadened spectrum. An examination of the mathematical foundation of 

these nonlinear equations reveals that  they were indeed intended for 

weak fluctuations and not for turbulence. By a nonlinear analysis that 

carries all the nonlinear fluctuations including those from velocities, 

we develop a general soliton formalism that err,pkrasizes the dynamics 

of the two-scale motions for a parallel development of turbulence in fluids 

and plasmas. From the Navier-Stokes equations for plasmas and compressible 

fluids of two scales (fast  and slow waves), we derive two equations of 

propagation of density waves. The fast wave is related to the fast  field 

by the property of the spontaneous creation of the field by rarefaction, 

and the slow density wave i s  related to the field intensity by the property 
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of the ponderomotive force. These two properties, which have been taken 

for granted in plasmas in the 2-S equations, a r e  not evident in fluids. 

We demonstrate them by a Lagrangien formalism and a kinetic method 

as consistent with the Navier-Stokes dynamics. The  first  of the two properties 

transforms the hyperbolic equation of prgpagation of the fast  density 

wave into a parabolic equation of evolution for the field-envelope a s  driven 

by the sound emission from finite velocity fluctuations. The second property 

gives the modulation. The  emission and the modulation produce two 

nonlinearities. Our soliton system takes the generalized form of the Z-$ 

equations by including the  sound emission. It can be degenerated into 

the original Z-S equations by the omission of the sound emission in the 

weak fluctuation approximation. In our general formalism the soli tons 

can be unstable and become turbuient, a s  occurring in the atmosphere. 

There, the measurments have shown that the solitons play a particularly 

important role in large scales, because the Navier-Stokes equations which 

a re  nonlinear in the  form a gradient a r e  not suitable. 
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1.  Introduction 

There has been a great interest recently in the modulational 

instability and turbulence of solitons, a s  described by the SchrSdinger 

equation 1 

with 

4. 

where Ea is the envelope of the field fluctuations, 

fluctuation, A is an operator of fluctuation, and 

N" i s  a density 
cv c 

a re  constant quantities having the dimensions a:f viscosity, frequency and 

(acceleration I -~ .  
The parabolic equation with cubic nonlinearity ( 1 )  has applications 

to a broad range of problems in nonlinear phenomena as connected 

with nonlinear optics, plasma, nerve systems, internal gravity waves, 
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water waves and fluid dynamics. It has been proposed already in 1944 

by Leontovich for analysing the nonlinear propagation of light and 

radio waves. The soliton description has become one of the s'is;.darc: method 

for treating nonlinear waves in multi-scale systems, where the  fast  waves 

a r e  modulated nonlinearly by slow waves. i t s  importance to instability 

of plasmas and to various problems of solid state has been demonstated 

by the large amount of analytical and numerical works in the  current  

literature. I ts  relevance to gravity wave and water waves 3 8 4 ,  a s  well 

a s  to electronic excitations in  long helical molecules has also been 

demonstrated. 

The soliton description has been shown to be valid in a wide 

variety of other applications in fluids .rotating flows, acoustic turbulence, 

the dynamics of liquid sheets, thermal convective instability, Rayleigh 

instability, and instability of PoiseuiIIe flow. In the atmosphere, many 

of these i nsta bi I ities w i l  I develop turbulence. 

The importance of the cubic nonlinearity to fluid dynamtcal 

turbulence has been pointed out already in 1944 by Landau ', and the 

cubic parabolic equation in the real form has been proposed by Stewartson 

and Stuar t  . 7 

The equivalence between the Navier-Stokes equations and the 

soliton formalism has been shown by several authors for fluids and plasmas. 

The equivalence in fiuid 8-13 was based upon the Madelung 

t rans  forma tion 
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The derivation was formal, involving certain restrictive conditions 

(irrotational -flow and special barotropic property),  and did not distinguish 

between scales. On the other hand, the equivalence in plasmas did 

distinguish scales, but took the properties of space charge and ponderomotive 
1 1 , 1 2  force as axioms, without going into their mathematical foundation 

The Schrodinger equation thus  derived suffers from its basis from weak 

fluctuations. 

In the following, w e  develop a nonlinear theory of solitons to 

be valid for both fluid and plasma. The nonlinearities come from two 

sources : The modulational nonlinearity is based upon the ponderomotive 

force from the large-scale [or low frequency) density fluctuations, and 

the nonlinear emission of sound is produced by the  strong velocity fluctuations 

of small-scales (or  high frequencies). The density fluctuations of two 

scales act differently cp. the  field : The density fluctuation of small- 

scale creates a spontaneous field-divergence, known a s  the space charge 

in plasma, and the density fluctuation of large-scale responds to the 

ponderomotive force, that  is a known property in plasma and enters  a s  

the Madelung hypothesis (3 )  in fluid. We develop two theories to explain 

these two phenomena. 
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2.  Hydrodynamics of multi-scale motions. 

2.1. Scaling into s10.w and fast  motions 

A 

A fluctuating quantity ( 

average ( - )  by the operator A 

1 can be decomposed into an ensemble 

and a fluctuation by the operator 
- 

- 
1 - A , where 1 i s  the unit operator. In multi-scale problems, w e  distinguish 

% between a slow fluctuation [- ) and a fast  fluctuation [ ) by the scaling 

operators 

G A" and A . 

These operators add to 

and correspondingly, a fluctuating quantity has the following components 

A fast fluctuation 
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has an amplitude, o r  envelope, that  varies slowly. It is denoted by 

( )a and is obtained by the  scaling operator xa. The representative 

frequency is  W . An infinitesimal rate of damping e written for 

convergence wil l  be omitted eventually. The complex conjugate par t  

hr 

.% 

is denoted by C.C. 

A 
The velocity u in compressible fluid consists of a t ransverse 

.I.. 

* and a longitudinal mode 4 u . mode u 
.I, LI 

2.2. Basic equations 

We consider the equations of continu&y and momentum as follows . 

f i  

The longitudinal mode is represented by the collective field 

fluid velocity 

E i .  The 
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may include both the t ransverse mode ^ut and the longitudinal mode 

Ceby putting o-= 0, or may represent the transverse mode only by 

putting 6 = 1.  The speed of sound is  c in isothermal fluid, so 

u 

- 
2 *  that the pressure gradient is c v n . The density is normalized to 

unity as  

We consider a homogeneous medium with . 

A c 

;? U = Q ,  
L 

6 - 
A E  = O .  - 

It will be tonveniant to transform ( 6 )  and (7) into the wave form by 
A 4  

cross differentiation for eliminating the common term n u  

yielding the equation of propagation 
d b  k '  

where 
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i s  the scattering (or emission) function. 

Since the two forms of the wave equation ( 1 1 1 ,  either with 

g- = 1 or with G = 0, are equivalent, we have the condition 

(5 

defining the collective field E The product 
j .  

is called the modulation. 

The scattering function 

has two modes : the transverse mode is 
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and the longitudinal mode is 

. 
- b -  - -  

a s  denoted by the superscripts 

ot and (171 

respectively. 

By the second derivative vv , the scattering function i5 

controlled by small scales, so that w e  can approximate the total scattering 

by 

The longitudinal component has a fast fluctuation 

- -  
-I 
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with the amplitude 

and a slow fluctuation 

The  index ( I N  denotes the  slow fluctuation as dist inct  from ( la. 

Vie assume that the correlations between di f ferent modes are negligible. 

Analogous definitions can b e  wr i t ten  for the transverse mode. Such an 

approximation is usual in sound propagation in a tu rbu len t  medium. 

The quantit ies 

4 
wi th  ( 1 refer to both the  rap id ly  fluctuating motion and the slowly 

f luctuating motion , as dist inguished by the notations 

and 

.L u . 
2-1 1 
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with the characteristic frequencies 

W and L3 
5 N '  

for the wave motions of high and low frequency scales, respectively. 

These two-scaled motions may be called the two species, indicated by 

3 .  a subscript ( 1 
I 

When the two scales (23a) and (23b) a re  treated as  the two 

species, it might be convenient for a certain purpose to write the fields 

CI 

in terms of a common field E , to be distinguished by the parameters - 
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The  coefficient 

A 
e = f  I 

P 

/r fi has a + sign for a neutral fluid, and eN = 1 , e, = - 1  for two 

species of opposite charges. The parameters depend on the 

considered, e . g .  on masses and charges in plasmas. 

species 
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3. Hypetbolic and parabolic equations for the propagation of density 

waves. 

3 . 1 .  Nbtations 

Far the fast species, w e  define 

and 

u c 

and sdale the modulation as  follows : 

L 
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in view of 
- Y  

A + A  = 1 ,  for a 

Ti + A ^ +  Z =  I ,  for a 
and 

- 

slowly fluctuating function ( 30a) 

rapidly fluctuating function (30b) 

A ( ) = 0, in a homogeneous medium. 

Here 1 is the unit operator. 

(3Oc) 

3.2. Hyperbolic equation for the propagation of high-frequency 

density waves 

Y 
By applying the scaling operator A,  w e  transform (11 )  with 

cT= 1 into : 

The modulation takes the approximate form 
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ry N 

from ( 2 9 b ) ,  upon replacing n by N for coupling between the two 

scales of density waves. 

Upon substituting (32) into ( 3 1 )  w e  derive the wave equation 

for the fast Mode, a s  follows ; 

The driving force is 

; 5 +  n E There w e  have neglected the compling 

have made use of the definition (13) .  

of different scales and i 

3.3. Parabolic equation for the envelope of density waves 

The  envelope of the  fast  wave has been defined by ( 5 )  and 
U 

is obtained by the operator Aa. Upon applying this operator and neglecting 

the second time derivative 3 Ka of t he  slowly fluctuating envelope, 

w e  transform the hyperbolic equation ( 3 3 )  into the  parabolic equation - 
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with 

and 

3.4.  Hyperbolic equation for the propagatim of low frequency 

density waves 

N 

In a;: analogous manner and by applying A to ( l l ) ,  w e  obtain 

the wave equation for the slow species of frequency scale ON, as follows 

with 
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by ( 1 3 ) .  

On the other hand, the species of fast scale dn may have 
ff 

a density n that varies slowly according to the wave equation 

where w e  have written 

and 
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with 

Upon dividing (40) by , w e  have 

By combining the wave equations ( 3 8 )  and ( 4 2 )  for the two 

slowly varying densities N and n 2 N , respectively , w e  obtain 4. - -  

-.-  

with 

Here w e  have neglected the term by 'p 0, 

from ( 2 6 ) .  
i 
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A w 

The term ( 1  + en ) 9. EN is canceled in plasma by 
. . I-  

n n e = - 1  , but i t  survives in fluids by en = +1, from ( 2 7 ) .  
n 
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4. Theory of ponderomotive force for plasmas and fluids 

The dynamical equation 

with 

describes the evolution 

field. It can be integrated to get 

of t he  longitudinal velocity under the collective 

J c 

0 

in the  Lagrangian description. The Lagrangian field 

(47) 

is defined as  the field a t  t he  t i m e  

We can calculate the product 

t -t along the trajectory. 
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The Fourier formula 

gives the integrand 

In a homogeneous medium, w e  can take the average with respect to t 

in the interval of t i m e  2T. It is assumed that the  scale of t 

than any characteristic t i m e  scales. We find 

is  larger 

The factor 

is called the factor of Fourier truncation. A f t e r  the  time average, ( 5 1 )  

is reduced into 
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i f  the high-frequency field i s  peaked at Wn as  its characteristic frequency, 

by (241, (51, and by writing 

Upon substituting (53) into (491 ,  w e  obtain 

( 54a 1 

with 

(54b) 

The infinitesimal damping 

limit 

of the integral. 

guarantees the convergence. The upper 

t of integration can be put equal to czu without altering the value 
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The dbuble integral is now evzluated by writing 

ii I 
L 

LL3, + f 

to find 

This yields the tensor 

to calculate the scattering functions 

and 

( 5 5 )  
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by (18) and (43a1,  finding the ponderomotive poteqtiai 

In (58b1, we have written 

and 

in d dimensions. The  formula (60) for the ponderomotive force is derived 

for its general validity to plasmas and fluids. 
hr 

From (44), (43 )  and (59), it is seen that the density wave N 
J 

i s  produced by an emission Q, by the t ranrverre  component 

of the velocity fluctuations, and 0" scurce Q, by the longitudinal 

component of the velocity fluctuations in the form of a ponderomotive 

force. 
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5.  Spontaneous creation of the collective field by the density waves 

( a  kinetic description) 

A s  a start ing basis, w e  use the master equation 

for the distribution function 

with the differential operator 

The kinetic description (62) replaces the dynamical description ( 4 6 ) .  

By considering the operator that  gives the deviation 
- 5 z 1 - A 

from the average, we transform (62) into 

By integrating, w e  obtain the distribution 

c 
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and by taking the zeroth moment w e  find the density 

The evolution operator A governs 

field 

the Lagrangian description of the 

$E ( t  - t ) along the phase trajectory, such that 

The position 

along the trajectory consists of a portion 

by 

as depending on the field in the  Lagrangian description. 

x - v t  from the streaming . . . "  
P 

in the Eulerian description, and another portion from the path 1 

By the use of the Fourier expansion, the Lagrangian field (68)  

gives 

(701 
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The orbit function 

has the following two components, by (69)  . The kinematic component 

of streaming 

gives 

The dynamic component 

(731 

is characteristic of the  oscillation and the scale of the field for the speciesp 

If the  characteristic frequency G) dominates the  dynamics of the oscillating 

field, the approximation i s  valid. The hypothesis that the Fourier component 

has a singular peak a t  

derivation of soliton equation for the laminar flow, which subsequently 

may serve to describe the  microdynamical state of turbulence. 

P 

without broadening is valid in our present 73 
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Upon substituttng (72b) and (73) into (711, and subsequently 

into (701 ,  w e  obtain . 

The approximation of neglecting the streaming a s  compared to the dominant 

frequency has been made The characterization by W s ecifies the field, n p 

t he  distribution, and the density, a s  
I 

From ( 6 7 )  , (74), we calculate the distribution function 

and the density 
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by taking the moment. The integral calculated as 

reduces (76) into 

By a change of variables from the specified field gcs into 

the common field SK by (251,  w e  find 
.L 

for one single species, or 

for many species. Here 

c) 2 
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is a factor independent of the  species, by ( 2 6 ) .  

A A 

For two species $:f densities N and n and characteristic frequencies 

and GN , (80)  is a n  

In particular, we have . 

" 

for the fast field, n, 
- e  

and 

for the slow field. 
1 (83bl 

The relations ( 8 3 )  describes the spontaneous creation of the  

self-consistent field by t h e  density fluctuations without going through 

a process of evolution. These relations a re  valid for fluid:, with 
A n A e = 1 and for plasmas with en = - 1  , eN = +l. P 
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6. The forced Zakharov equations 

6.1. Envelope equzition for the field 

In (35) w e  have derived the envelope equation for the density 
Y 

By the  relatioriship (83a), rewritten as  "a * 

by the  use of ( 2 5 a )  and (811, the envelope equation for 

formed into an envelope equation for 

can be trans- 
OI 

Ea, with 

6 = O  
Q 

from (37). The result of transformation is : 

Note that ,  in view of 

(85) 

-u 
in a homogeneous medium, we may omit the operator A in (86). 
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By integrating (86 ) ,  w e  find 

n, 

The forcing function i s  Xa , such that 
a 9  

or  , upon integration, 

U 

In the  absence of the  driving force, i.e, Xa = 0, ( 8 7 )  IS 

degenerated into the first  equation of t he  Zakharov equation 

With the condition ( 2 ) ,  the equation in the form (89) IS also called the 

Schrodinger equation, a s  written in ( 1 1 ,  and the equation in the form 

(87) will be called the forced Schrodinger equation. 

6.2.  The second equation cf the  Zakharov system with the driving force 

&. 
The density N is governed by the wave equation ( 4 4 ) .  By 

the use  of the Poisson equation (83b) ,  rewritten as  
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by (25) and [ 8 1 ) ,  w e  transform ( 4 4 )  into 

by writing, from (60)  . 

with 

The approximation in ( 9 1 )  i s  made on t h e  basis of the  upequalities 

and 

that a r e  small by the  factor f ’<< 1 .  
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7 .  Conclusions 

The hydrodynamics of solitons is governed by the system of 

equations (87) and (91)  for the variables E" and N , respectively. 

The system contains the modulational nonlinearity by the ponderomotive 

force 

velocity fluctuations at  the  small scale. The derivation i s  based upon 

finite fluctuations. 

N 

a - 
at the large scale and the nonlinear emission of sound by the s t rong 

By the hypothesis of local nonlinearity that approximates ( 9 1 )  

by ( 2 1 ,  w e  reduce the system into the forced Schrodinger equation 

The two nonlinearities can be clearly shown in the kinetic represt. n- 

tation by the master equation 

where the distribution function 

has E a s  an independent random variable, and the differential operator 
h 
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#- 

contains two nonlinearities from the modulation by 

emission by 

N and the sound 
cc 

, a s  two convections in the phase space. x, 
..L 

i f  w e  confine ourselves to weak velocity fluctuations, w e  will 
N 

m i s s  the  emission of sound by 

( 8 7 )  and (91)  into the Zakharov equations and the  equation ( 9 4 )  into 

Xa , degenerating the system of equations 
*r 

the standard Schrodinger equation 

Our system of equations (87) and (91)  and o u r  forced Schrodinger 

equation ( 9 4 )  are valid for both plasma and fluid turbuler,ce, sir,re the derivation 

uses a general argument. 

Acknowledgements 

This work was supported by the National Aeronautics and Space 

Administration, Grant No. NAS 8-35153, through the office of the 

Universities Space Research Association, Boulder, Colorado. 

2-36 



REFERENCES 

1. Zakharov, V.E.  . Zh. Eksp. Teor. Fit. 62,  - 1745 ( 1 9 7 2 )  

JETP - 35 

2 .  Leontovich, M.A.  Izv. Akad. Nauk SSSR, Ser. Fiz. - 8 ,  16 ( 1 9 4 4 ) .  

3. Dysthe, K . B .  Proc. R .  SOC. Lond. A 369, 105 ( 1 9 7 9 ) .  

4. Davey, A .  and Stewartson, K .  Proc. R .  SOC. Lond. A 3 3 8 ,  101 ( 1 9 7 4 ) .  

5 .  Davydov, A.C.  . Physica Scripta - 20 , 387 ( 1 9 7 9 ) .  

, 903 ( 1 9 7 2 ) l  

- 

6. Landau, L. C.R. Acad. Sci. U.R.S.S. - 44, 31 ( 1 9 4 4 ) .  

7. Stewartson, K .  and Stuar t ,  J.T. . J.Fluid Mech. - 48, 529 ( 1 9 7 1 ) .  

8. Madelung, E.  : Zeit. Phys. - 40,  322 ( 1 9 2 6 ) .  

9. Spiegel, E.A. : Physica - 1D,.236 ( 1 9 8 0 ) .  

10. Dietrich, K. and Vautherin, D .  J .  Physique - 46, 313 ( 1 9 8 5 ) .  

11.  Mora, P. and Pellat, R .  . Phys. Fluids - 24 ( 1 2 ) ,  2227 ( 1 9 8 1 ) .  

12.  Hatori, T .  Phys. Fluids - 28 ( 1 1 ,  219 ( 1 9 8 5 ) .  

2-37 
d 



3 RECIPIENT'S CATALOG NO. 1 REPORT NO. 2. GOVERNMENT ACCESSION NO. 

NASA CR-3969 
5 REPORT DATE 4 T I T L E  AND SUBTITLE 

Soliton Turbulence 
March 1986 

6. PERFORMlNG ORGANIZATION CODE 

Universities Space Research Association 
merican City Building, Suite 311 
olumbia, Maryland 21044 

National Aeronautics and Space Administration 
Washington, D .  C. 20546 

Theoretical and numerical works in atmospheric turbulence have used the 
Navier-Stokes fluid equations exclusively for describing large- scale motions. Con- 
troversy over the existence of an average temperature gradient for the very large 
eddies in the atmosphere suggested that a new theoretical basis for describing 
large-scale turbulence was necessary. A new soliton formal i sm as  a fluid analogue 
that generalizes the Schrodinger equation and the Zakharov equations has been 
developed. 
modulation provided by the density fluctuations and from convection due to the 
emission of finite sound waves by velocity fluctuations, treats large-scale turbulence 

instabilities more explicitly than the Navier-Stokes system because it has a 
nonlinearity of the gradient type,  while the Navier-Stokes has a nonlinearity of 
the non-gradient type. 
describes the micro-hydrodynamical state of soliton turbulence and is valid for 
large-scale turbulence in fluids and plasmas where internal waves can interact with 
velocity fluctuations. 

This formalism, possessing all the nonlinearities including those from 

as  coalescing and colliding solitons. The new soliton system describes large-scale I 

The forced Schrodinger equation for strong fluctuations 

Turbulence 
Atmospheric Boundary Layer 
Storm and Mesoscale Processes STAR Category: 47 
Global Scale Processes 
Atmospheric and Terrestrial 

Unclassified - Unlimited 

ntal Processes 

Unclassified 

For sale by National Technical Information Senrice. Springfield, Virginia 22161 

NASA-Langley, 198f 
.I 


